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Abstract
Variational execution offers an avenue of efficiently ana-
lyzing configurable systems, but data structures like lists
require special consideration. We implement automatic sub-
stitution of amore efficient list representation in a variational
execution framework and evaluate its performance in micro-
benchmarks. The results suggest that the substitution may
offer substantial performance improvements to programs
involving highly variational lists.
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1 Configurable Systems
Configurable systems pose distinct challenges for program
analysis and testing. The number of system configurations
grow as much as exponentially with the number of config-
urable features, and each combination may produce unex-
pected behavior [6]. Such systems must therefore be ana-
lyzed with special consideration for configuration complex-
ity, but this is non-trivial due to the number of configurations.
Furthermore, serious bugs can be caused by configurations,
such as the HeartBleed vulnerability caused by an often un-
necessary but default configuration option [4]. Analyzing
these systems therefore presents a significant verification
and security problem.
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2 Variational Execution
Variational execution is a program analysis technique that
exploits sharing among configurations to enable reasoning
across all configurations [5, 6, 11]. It is similar to symbolic
execution, but it executes the program with concrete values
distinguished by symbolic contexts. A context is a set of con-
figurations under which executions are performed and data
is stored, similar to a path condition [3]. Contexts may be
represented by propositional formulas; for example, context
A ∧ B represents configurations where both features A and
B are enabled. Executions and data are shared by collect-
ing operations and values common to many configurations
under a single context. Because most executions and data
are redundant across configurations [5, 6, 11], this enables
efficient analysis of highly configurable systems.

3 Variational Lists Cause Explosion
Although this strategy is general, naive representation of
data structures can have extreme performance repercussions.
Lists are a simple representative of these problems. A vari-
ational list can be naively implemented by storing a sepa-
rate list for every (feature-dependent) variation of its ele-
ments. However, this representation grows exponentially
when many of the list’s entries are added under different
contexts, such as when building a list of optional plugins that
are active. As an illustration, consider the construction of
the list below, where the first two elements are added under
different contexts (as in CheckStyle or WordPress [6]) and
the last two under context True (every configuration).

Figure 1. Building a naive variational list.

Figure 2. Accessing elements of a naive variational list.

Iterating over this list (figure 1) is extremely expensive.
When iterating, elements are obtained in sequence for all
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configurations. The first element of a naive list is a choice
between the first element of every list variation (see figure
2). Such choices make iteration over naive variational lists
expensive. To analyze CheckStyle, for example, Meinicke
et al. needed to rewrite its code to avoid adding list entries
under many contexts [6].

4 Automatic CtxList Substitution
We contribute a fully automatic bytecode transformation
that substitutes CtxList, a more efficient list implementation,
for naive lists. CtxList represents variational lists as a plain
list of optional entries with associated contexts, just like
Walkingshaw et al.’s OList [11]. CtxList differs only in that
it stores pairs of value and context, implicitly encoding the
optional presence of elements by assuming that they only
exist in their associated contexts. Figure 3 illustrates CtxList
using the above example.

Figure 3. Building a CtxList.

Context differences between elements do not affect CtxList’s
size, unlike the naive list. To iterate over CtxList we obtain
the elements as they appear in the list and execute the body
in the context of the element being processed. Thus, instead
of attempting to index elements according to the context of
the loop, elements are accessed regardless of context and the
loop body is conditioned on each element’s context.

This behavior ultimately preserves the original list seman-
tics, so it can be automatically substituted for naive lists.
However, iteration loops must then be transformed to per-
form CtxList’s different method of iteration. Similar to loop
unrolling [1], iteration loops must be rewritten transpar-
ently to the programmer. We modified a Java variational
execution framework to automatically perform this trans-
formation. The framework rewrites the bytecode of classes
at load-time to execute the program variationally. During
rewriting, instantiations of LinkedList and ArrayList are
replaced with CtxList, and loops are identified using control
flow analysis [1] and rewritten. 1

5 Preliminary Evaluation
The CtxList replacement sought to improve the memory con-
sumption and performance of processing lists variationally.
To that end, we performed micro-benchmarks of the memory
consumption and performance of CtxList for eleven common
list operations with elements under a varying number of dif-
ferent contexts. One of those benchmarks performs a simpli-
fied representation of the CheckStyle behavior problematic
for the naive list (storing elements under many different
contexts).
1Code available: github.com/chupanw/vbc/tree/iteration-optimization

Figure 4. Benchmark results showing memory consumption
and execution time for CheckStyle behavior.

Figure 4 shows that where the naive list’s memory and
execution time grow exponentially with features, CtxList’s
performance scales linearly for the CheckStyle-type behav-
ior, and its memory consumption grows cubically with fea-
tures. This suggests that CtxList replacement would obviate
the need for the manual modifications previously necessary
to analyze CheckStyle and similar programs [6]. The other
benchmarks showed similar gains in performance, univer-
sally reducing the naive list’s exponential growth to linear
or quadratic growth. 2

6 Related Work
The CtxList implementation was inspired by Walkingshaw
et al.’s [11] OList. This work fits into the broader context of
variational execution [5, 6, 11] and specifically data structure
optimizations for variational execution [7, 11]. Research on
variational execution has its roots inmodel checking [2, 9, 10]
and symbolic execution [8]. This work further relates to
program optimization in the context of compilers, specifically
equivalent rewrites [1].

7 Limitations and Future Work
We implemented automatic substitution of CtxList in a vari-
ational execution framework and evaluate its performance
gain in micro-benchmarks. The results suggest that the sub-
stitution may provide strong improvements for programs
processing highly variable lists. However, our benchmarks
may not be sufficiently representative to indicate similar per-
formance gains for real systems. Additionally, only iterator
loops can currently be transformed. Future work will explore
transformation of more types of loops and the performance
gains available for real-world systems.
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