
Lukas Lazarek,1 Chu-Pan Wong,2 Jens Meinicke,2,3 Christian Kästner2

1University of Massachusetts Lowell
2Carnegie Mellon University

3University of Magdeburg

How To Efficiently Process 2100 Different Lists

Building a list with
Variational Execution Building a V<List> Building a CtxList

List<Integer> x = new List<>();
if (A)
 x.add(1);
if (B)
 x.add(2);
// ...

True
True
A
True
B
...

[]x:
[1]

[]

A
x:

A
B

B

[1, 2]
[1]
[2]

[]

x:

[1A]x:

[1A, 2B]x:

x: []

Iterating over V<List> processes the
elements of every copy of the list; one
element may be visited many times.

Iteration over CtxList is transformed to
visit each element once in its associated
context.

This method is general and sound, but
not necessarily efficient. Data structures
present performance problems.[2]

V<List>
V<List> is the simplest variational list
representation with a seperate copy of
the list for every configuration.
Exponential growth of feature
configurations creates exponential
copies of the list!

CtxList
V<List> is automatically replaced with
CtxList, a specialized list storing pairs of
values with contexts so that every
element occurs only once. The explosion
of configurations does not lead to
redundant values in the list.

Variational Execution
Variational Execution is an analysis
technique that exploits sharing of
executions and data to make testing all
configurations feasible. It works by
mapping concrete values to sets of
configurations called contexts.

⟶
becomes

⟶
becomes

⟶
becomes

Iterating over list Iterating over V<List> Iterating over CtxList

Handling the Exponential Explosion
Configurable systems have too many features to test all configurations. There is an exponential number of combinations with the
number of configurable features available. Yet, most executions and data are redundant across configurations.[1][3] Exploiting this
redundancy provides a means of soundly reasoning about configurable systems over all configurations. For example, it enables
testing that a system works in every possible configuration without having to actually run the system for each one. Alternatively, it
can help reveal and diagnose unintended feature interactions within a system.

Future Work
CtxList can be automatically substituted for lists processed using iterators. Future work will explore ways to avoid poor random
access performance by transforming index-based loops to use iterators instead.
Another avenue is to evaluate the performance gain of this optimization in larger, real-world programs.

Evaluation

List<Object> l = new ...
if (A)
 l.add(new Object());
if (B)
 l.add(new Object());
// ...
for (Object el: l)
 el.expensiveOperation();

CheckStyle Iteration Pattern

x.get(6)

Random Access

for (Integer el: x)
 System.out.println(el)

Basic Iteration Pattern

Building a list with
Variational Execution

List<Integer> x = new ...
if (A)
 x.add(1);

if (B)
 x.add(2);

// ...

[1] J. Meinicke. VarexJ: A Variability-Aware Interpreter for Java Applications. Master’s thesis, University of Magdeburg, 2014.
[2] E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, and E. Bodden. Variational Data Structures: Exploring Tradeoffs in Computing with Variability. In Proceedings of the 13rd SIGPLAN Symposium on New Ideas in Programming and Reflections on Software at SPLASH
(Onward!), pages 213--226, New York, NY: ACM Press, 2014.
[3] J. Meinicke, C. Wong, C. Kästner, T. Thüm, and G. Saake. On Essential Configuration Complexity: Measuring Interactions In Highly-Configurable Systems. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 483--494, New York, NY: ACM Press, September 2016.

for (element: x)
 // ...

for (i = 0; i < x.length; i++){
 for (element: x.getChoice(i))
 // ...
}

for ((ctx, element): x){
 if (ctx.isSatisfiable)
 // ...
}

1A
element:

2B

∅

A
2B

∅
∅

... 1Aelement: 2B
...

