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Research Question

How does Gradual Typing help with debugging

mistaken type annotations?
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Mistaken Types: A Story of Gradual Typing in Practice
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Gradual Typing in Practice
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Type Interface Mistakes Happen Ofteln

Mixed Messages: Measuring Conformance and
Non-Interference in TypeScript®

Type Test Scripts for TypeScript Testing
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Highly lllogical, Kirk: Spotting Type Mismatches in the Large
Despite Broken Contracts, Unsound Types, and Too Many
Linters
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‘The DefinitelyTyped repository hosts type declarations for thousands of JavaScript libraries. Given the lack of
formal connection between the types and the corresponding code, a natural question is are the types right? An
equally important question, as DefinitelyTyped and the libraries it supports change over time, is how can we
keep the types from becoming wrong?

In this paper we offer Scotty, a tool that detects mismatches between the types and code in the Definitely-
‘Typed repository. More specifically, Scotty checks each package by converting its types into contracts and
installing the contracts on the boundary betsween the library and its test suite. Running the test suite in this
environment can reveal mismatches between the types and the JavaScript code. As automation and generality
are both essential if such a tool is going to remain useful in the long term, we focus on techniques that sacrifice
completeness, instead preferring to avoid false positives. Scotty currently handles about 267% of the 5006
packages on DefinitelyTyped (61% of the packages whose code is available and whose test suite passes).

Perhaps unsurprisingly, running the tests with these contracts in place revealed many errors in Definitely-
Typed. More surprisingly. despite the inherent limitations of the techniques we use, this exercise led to one
hundred accepted pull requests that fix errors in DefinitelyTyped, demonstrating the value of this approach
for the long-term maintenance of DefinitelyTyped. It also revealed a number of lessons about working in the
JavaScript ecosystem and how details beyond the semantics of the language can be surprisingly important
Best of . it also revealed a few places where programmers preferred incorrect types, suggesting some avenues
of research to improve TypeScript.
©CS Concepts: - Software and its engincering — Software verification and validation.
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1 INTRODUCTION

We built Scotty, a prototype infrastructure that scans eve iy package in DcﬁmlehTy‘ptd alarge,
Microsoft-maintained xeposllory of TypcScnp( type de in order to fing

between JavaScript i d their type Scotty is a mostly
automatic system. It triggers errors when a mismatch is observed, but an absence of errors does
not guarantee the of a type decl: and, versely, an error reported by Scotty is
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languages: for instance, the compiler can quickly catch oby
ous coding blunders, and editors can provide code comple:
tion. Types also carry documentation value, giving program-
mers a streamlined language with which to document AP
‘TypeScript does not ensure type safety, in other words, the
type system is unsound by design. Exen for programs that
pass static type checking. it is possible that a variable at run-
time has a value that does not match the type annotation.
This is seen as a trade-off necessary for keeping the type
system unrestrictive.

‘TypeScript is designed to compile to JavaScript using
a shallow translation process. Each TypeScript expression
translates into one JavaScript expression. and a value in
‘TypeScript i the same as a value in JavaSeript. This makes it

i o
ithas found 142 errors in the declaration files
. with an analysis time of  few minutes per
ith a low number of false positives. Our anal-
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eveals some practical limitations of the Type-
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ticular existing JavaSecript libraries, without the use of a for
eign function interface as known from other programming
languages. However, in order to provide useful type check-
ing, it is beneficial for the compiler to know what types to
expect from the JavaSeript code. For this purpose. a sub-
set of TypeScript is used for describing the types of func-
tions and objects provided by libraries written in JavaScript
Once such a description has been writien for a JavaSeript i-
brary. the library can be used by TypeSeript programmers as
though it were written in TypeScript. This language subset
i used extensively and is an essential part of the TypeScript
ecosystem. As an example, the Definitely Typed repository.
which is a community effort to provide high quality Type-
Seript declaration files, a the time of writing contains dec-
larations for over 200 libraries. compr tal of over
100,000 effective lines of code in declaration fles.
“TypeScript declaration files are written by hand, and often
by others than the authors of the JavaSeript libraries. If the
programmer makes a mistake in a declaration fil. tools that
depend on it will misbehave: the TypeScript type checker
may reject perfectly correct code, and code completion in
IDEs may provide misleading suggestions. The TypeSecript
‘compiler makes no attempt to check the correctness of the
declaration file with respect to the library implementation,
and types are not checked at runtime, So any bugs in it
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1 Introduction

JavaScript is the most popular |1npua|:r for writing web
applications (7). It is also increa ed for back-end
applications running in NodeJs, e npl -base
i platform JavaScript s appealin to developers because
its forgiving dynamic typing enables them to create simple
pieces of code very quickly and proceed on a trial-and-error
basis

JavaSeript was never intended to be more than a script-

ing language and, thus, lacks features for maintaining and

evolving large codebases. However, nowadays developers
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some of these unintuitive JavaSeript behaviors.

‘The cognitive load produced by these behaviors is miti-
gated in languages that use build tools based on type infor-
‘mation. This insight motivated the creation of TypeScri
cript with expressive type annotations [15),
widely used altemative among JavaScript
developers, because it incorporates features that are help-
ful for developing and maintaining large applications [6].
TypeScript enables the early detection of several kinds of

like zumccmpkho in an IDE.

Despite the advantages, it is unrealistic to expect the
workd o switch to TypeSeip in  day: Therefre exiting
JavaSeript libraries can be used in a TypeSeript project by
adding a declaration file that describes the library’s APl in
terms of types. The DefinitelyTyped repository [3] has been
created as a community effort to collect declaration iles for
popular JavaScript libraries. At the time of writing it contains
declaration files for more than 6000 libraries.




The Academic Perspective on Type Mistakes
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[ Erasure ] [ Transient } [ Natural ]

No dynamic checks for Type assertions in typed code  Higher order contracts
type annotations
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Research Question (refined)

Given the same statics, which semantics for Gradual Typing
provides better error information for systematically

locating type interface mistakes?



Comparing Each Semantics, by Example
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data = json-unpack(...) [_):] for entry in data:

helper(data) age = entry[“age”]
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Comparing Each Semantics, Systematically
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Data providing evidence to support or refute the hypothesis




A Hypothesis, by Example

-Q- Hypothesis  Using the type system, error information can be translated into the location of type
N interface mistakes
= helper
main helper : (List (HashTable ..)) - Int
def helper(data):
data = json-unpack(...) for entry in data:
helper(data) age = data[“age”]

\ json-unpack-interface

[json—unpack :

X
JSON - (List_(HashTable ..)) ’ [ Natu ral }

11
==
Type error:

json-unpack conflicting result type annotations
for json-unpack
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A Hypothesis, by Example

Using the type system, error information can be translated into the location of type

Hypothesis ' A
yp interface mistakes
helper
mam<\ /,helper : (List (HashTable ..)) - Int
) | | def helper(data):
data = json-unpack(...) | 5>/ for entry in data:

helper(data) | I age = datal“age”]
AN

[

\ json-unpack-interface
json-unpack : {}
JSON - (List J_HashTable w)) ’ [ Transient }

==
Type error:
conflicting result type annotations

json-unpack
for json-unpack
1"




A Hypothesis, by Example

N\ ! 7/
-O- Hypothesis  Using the type system, error information can be translated into the location of type
N interface mistakes
= ( helper \
main helper : (List (HashTable ..)) - Int
) def helper(data):
data = json-unpack(...) for entry in data:
helper(data) age = data[“age”]
L\ -

\ json-unpack-interface

[json—unpack :

X
JSON _. (List (HashTable ..)) ’ [ Erasure }

Error: non-integer index to list
json-unpack stack: helper
main




A Procedure Reifying Our Hypothesis

Erasure

1. Run the program with Natural semantics to get blame

Natural-exceptions W

2. ldentify the (untyped) blamed component
3. Try to type that component™  (may fail) L[

Transient-exceptions

4. Type-check the program

4.11f it type-checks: goto 1
$lame
4.2 Otherwise: stop (success)



Creating an Experiment to Test Our Hypothesis
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Creating an Experiment to Test Our Hypothesis

[... details omitted ...]
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[ Transient last blame ]

n O n O n O 1IN O 1N O
tHt NN NN A

[nJjosn aJ10W SOLIRUSIS JO 9

Results

R PO |
—t——f————1——t————f—t—1—1

L S L A
n O 1N O 1N O 1N O (|
- = NN M MN <FH S

[NJOSN SS9 SOLIRUSOIS JO ¢

16




How Blame Stacks Up

Transient last blame

Natural blame
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Checks Without Blame Don't

Transient exceptions

Natural exceptions
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( Transient last blame ]
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Creating an Experiment to Test Our Hypothesis

‘ [Greenman 2022]
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Creating an Experiment to Test Our Hypothesis
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Erasure Detects Most of the Bugs

100

% of scenarios producing error
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