How to Evaluate Blame
for Gradual Types

(Part 2)

Lukas Lazarek,
Ben Greenman, Matthias Felleisen,
Christos Dimoulas

Research Question

How does Gradual Typing help with debugging

mistaken type annotations?

et (8%

Mistaken Types: A Story of Gradual Typing in Practice

/‘5\

TypeScript i

Gradual Typing in Practice

e s S

L]
: o1 Gotofile | addfie~ (B about I ype I l lte rfaces
The reposit
R [@types/leaflet-freedraw] Add eventT... .. ~x f7e1ddc 2 TypeScript typ

sort:

any[] ¥
(any any - laollesm)

jitorconfig & .prettierrc.json (#37400) 4
P ——— ~ any[]
[PM npm (#50241)

@remcohaszing

Type Interface Mistakes Happen Ofteln

Mixed Messages: Measuring Conformance and
Non-Interference in TypeScript®

Type Test Scripts for TypeScript Testing

Jack Williams?, J|
Jakub Zalewski

1 University of Edi
Jack.williamsted.

2 University ot B
ste.Horriseed

5 Untversty ot menlaRy
a.ac | S
4 University of Edi
Jakub. zalouskited

wadleroint

—— Abstract
TypeScript participates
typing. The Definitely’

popular JavaScript libral
their corresponding decls

We present a practicy

for use with TypeSeript.
libraries and TypeSeript
TPD, to those libraries i
Of the 122 libraries we c
to the declaration.
Gradual typing shou
its behaviour, except to
However, our experience|
proxy mechanism for enf
the library or its tests vi

1998 ACM Subject Cla
Keywords and phrases
Digital Object Identifie
Supplementary Materia
http: //dx.doi .org/1
1 Introduction

We
enforce conformance b

* This work was supportd
EPSRC grants EP/K03

O ©
O licensed under C
Bina: oo e,
P

ures S

Highly lllogical, Kirk: Spotting Type Mismatches in the Large
Despite Broken Contracts, Unsound Types, and Too Many
Linters

JOSHUA HOEFLICH, Northwestern University, USA
ROBERT BRUCE FINDLER, Northwestern University, USA
MANUEL SERRANO, Inria/UCA, France

‘The DefinitelyTyped repository hosts type declarations for thousands of JavaScript libraries. Given the lack of
formal connection between the types and the corresponding code, a natural question is are the types right? An
equally important question, as DefinitelyTyped and the libraries it supports change over time, is how can we
keep the types from becoming wrong?

In this paper we offer Scotty, a tool that detects mismatches between the types and code in the Definitely-
‘Typed repository. More specifically, Scotty checks each package by converting its types into contracts and
installing the contracts on the boundary betsween the library and its test suite. Running the test suite in this
environment can reveal mismatches between the types and the JavaScript code. As automation and generality
are both essential if such a tool is going to remain useful in the long term, we focus on techniques that sacrifice
completeness, instead preferring to avoid false positives. Scotty currently handles about 267% of the 5006
packages on DefinitelyTyped (61% of the packages whose code is available and whose test suite passes).

Perhaps unsurprisingly, running the tests with these contracts in place revealed many errors in Definitely-
Typed. More surprisingly. despite the inherent limitations of the techniques we use, this exercise led to one
hundred accepted pull requests that fix errors in DefinitelyTyped, demonstrating the value of this approach
for the long-term maintenance of DefinitelyTyped. It also revealed a number of lessons about working in the
JavaScript ecosystem and how details beyond the semantics of the language can be surprisingly important
Best of . it also revealed a few places where programmers preferred incorrect types, suggesting some avenues
of research to improve TypeScript.
©CS Concepts: - Software and its engincering — Software verification and validation.

Additional Key Words and Phrases: Contracts, Gradual Typing, TypeScript, Definitely Typed, Buggy Types

ACM Reference Format:

Joshua Hoeflich, Robert Bruce Findler, and Manuel Serrano. 2022. Highly Hlogical, Kirk: Spotting Type
Mismatches in the Large Despite Broken Contracts, Unsound Types, and Too Many Linters. Proc. ACM
Program. Lang. 6, OOPSLA2, Article 142 (October 2022), 26 pages. hitps:/doi.org/10.1145/3563305

1 INTRODUCTION

We built Scotty, a prototype infrastructure that scans eve iy package in DcﬁmlehTy‘ptd alarge,
Microsoft-maintained xeposllory of TypcScnp(type de in order to fing

between JavaScript i d their type Scotty is a mostly
automatic system. It triggers errors when a mismatch is observed, but an absence of errors does
not guarantee the of a type decl: and, versely, an error reported by Scotty is

‘Authors’ addresses: Joshua Hoeflich, Northwestern University, USA, ; Robert Bruce Findler, Northwestern University, USA.
: Manuel Serrano, Inria/UCA, France,

“This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2022 Copyright held by the owner/author(s).

2475-1421/2022/10-ART142

hitps://doi.org/10.145/3563305

Fernando Cristiani
Hochschule Karlsruhe
Karlsruhe, Germany

Generation of TypeScript Declaration Files from
JavaScript Code

Peter Thiemann
AlbotLlee Ui bty
eiburg, Germ:

tract

Hopers are starting to write large and complex applica-
t

Asger Feldthaus
Aarhus University
asf@cs.au.dk

ipt programming language adds optional types
. with support for interaction with existing
raries via interface declarations. Such decla-
Jbeen written for hundreds of libraries, but they
i 10 write and often contain error y
e checking and misguide code completion for
n code in IDE
L pragmatic approach to check correetness of
claration files with respect to JavaScript ibrary
jons. The key idea in our algorithm is that many
rors can be detected by an analysis of the li-
ation state combined with a light-weight static
brary function code.

idea

Checking Correctness of
TypeScript Interfaces for JavaScript Libraries

Anders Mller
Aarhus University
amoeller@cs.au.dk

languages: for instance, the compiler can quickly catch oby
ous coding blunders, and editors can provide code comple:
tion. Types also carry documentation value, giving program-
mers a streamlined language with which to document AP
‘TypeScript does not ensure type safety, in other words, the
type system is unsound by design. Exen for programs that
pass static type checking. it is possible that a variable at run-
time has a value that does not match the type annotation.
This is seen as a trade-off necessary for keeping the type
system unrestrictive.

‘TypeScript is designed to compile to JavaScript using
a shallow translation process. Each TypeScript expression
translates into one JavaScript expression. and a value in
‘TypeScript i the same as a value in JavaSeript. This makes it

i o
ithas found 142 errors in the declaration files
. with an analysis time of few minutes per
ith a low number of false positives. Our anal-
rogrammers use libr e declarations
eveals some practical limitations of the Type-
stem.

nd Subject Descriptors D.2.5 [Sofiware En
[Testing and Debugging

Ins Languages, Verification

ipt [10] programming language s a strict super-
ipt, one of the main additions being optional
ison détre of optional types is to hamess the
2 dynamically typed language. while providing
enefits otherwise reserved for statically typed

el o hardcopes o all o pat of i woek. o personal o

.
i isecoiss st

y par-
ticular existing JavaSecript libraries, without the use of a for
eign function interface as known from other programming
languages. However, in order to provide useful type check-
ing, it is beneficial for the compiler to know what types to
expect from the JavaSeript code. For this purpose. a sub-
set of TypeScript is used for describing the types of func-
tions and objects provided by libraries written in JavaScript
Once such a description has been writien for a JavaSeript i-
brary. the library can be used by TypeSeript programmers as
though it were written in TypeScript. This language subset
i used extensively and is an essential part of the TypeScript
ecosystem. As an example, the Definitely Typed repository.
which is a community effort to provide high quality Type-
Seript declaration files, a the time of writing contains dec-
larations for over 200 libraries. compr tal of over
100,000 effective lines of code in declaration fles.
“TypeScript declaration files are written by hand, and often
by others than the authors of the JavaSeript libraries. If the
programmer makes a mistake in a declaration fil. tools that
depend on it will misbehave: the TypeScript type checker
may reject perfectly correct code, and code completion in
IDEs may provide misleading suggestions. The TypeSecript
‘compiler makes no attempt to check the correctness of the
declaration file with respect to the library implementation,
and types are not checked at runtime, So any bugs in it

Thttps:/ /gt thib . con/bori syankov/De finitelyTyped

o

97

=5 .

the 18th ACM SIGPL onference on Manag

gramming Languages and Runtimes (MPLR '21), September 29-31,
2021, Miinstr, Germany. ACM. New York, NY, USA. 16 pages. https:
doiorg/10.1145/3475738.3480941

1 Introduction

JavaScript is the most popular |1npua|:r for writing web
applications (7). It is also increa ed for back-end
applications running in NodeJs, e npl -base
i platform JavaScript s appealin to developers because
its forgiving dynamic typing enables them to create simple
pieces of code very quickly and proceed on a trial-and-error
basis

JavaSeript was never intended to be more than a script-

ing language and, thus, lacks features for maintaining and

evolving large codebases. However, nowadays developers

oo arge e conpdex spplications i JaviSiip, e
take

or unexpectd type coercions cause dew elﬂpers to qu..d a
i of

dence or gt n\lshaps For mmpl. 2l aSm,,« code blog
il

ations while programming in Jav: nsmpn .
some of these unintuitive JavaSeript behaviors.

‘The cognitive load produced by these behaviors is miti-
gated in languages that use build tools based on type infor-
‘mation. This insight motivated the creation of TypeScri
cript with expressive type annotations [15),
widely used altemative among JavaScript
developers, because it incorporates features that are help-
ful for developing and maintaining large applications [6].
TypeScript enables the early detection of several kinds of

like zumccmpkho in an IDE.

Despite the advantages, it is unrealistic to expect the
workd o switch to TypeSeip in day: Therefre exiting
JavaSeript libraries can be used in a TypeSeript project by
adding a declaration file that describes the library’s APl in
terms of types. The DefinitelyTyped repository [3] has been
created as a community effort to collect declaration iles for
popular JavaScript libraries. At the time of writing it contains
declaration files for more than 6000 libraries.

The Academic Perspective on Type Mistakes

=

[Erasure] [Transient } [Natural]

No dynamic checks for Type assertions in typed code Higher order contracts
type annotations

Stacktraces Blames many Blames one

Research Question (refined)

Given the same statics, which semantics for Gradual Typing
provides better error information for systematically

locating type interface mistakes?

Comparing Each Semantics, by Example

[helper
main / . \\
2N helper : (List (HashTable ..)) - Int
.. def helper(data):

data = json-unpack(...) [_):] for entry in data:

helper(data) age = entry[“age”]
\ S AN >,

json-unpack-interface

json-unpack :

JSON — (List (H hTﬁbl)) >
N 1S as a e ..
| | [Transient }

| —

Type assertion failure

json-unpack blaming:
main / helper

Comparing Each Semantics, Systematically

Does Bl4

N\ ! 7/ LUKAS LAZ|
ALEXIS KIN
SAMANVIT] How to Evaluate Blame for Gradual Types

.
Hypothesis s

AL BEN GREENMAN, PLT @ Northeastern University, USA
-— ol MATTHIAS FELLEISEN, PLT @ Northeastern University, USA
- system discovel CHRISTOS DIMOULAS, PLT @ Northwestern University, USA
Inreality ho
of bugs. The
use contracts t
source of the p
“This paper
we introduce a
to translate bla}

Programming language theoreticians develop blame assignment systems and prove blame theorems for
gradually typed programming languages. Practical implementations of gradual typing almost completely
ignore the idea of blame A...gum» nt. This contrast raises the question whether blame provides any val
the working how to evaluate of|

Sitegin. Th papes euieliites (1)t st vt s fo e ssuGmsns seumgias an ()
the results from applying it to three different semantics for gradual typing. These results cast doubt on
the theoretical effectiveness of blame in gradual typing. In most scenarios, strategies with imprecise blame

o

by how progry cignmentae a3 hlpl 0. ol seting rogeamuoe setegies withprovbly coret brne
Constructa S Concpts: - Software and its engincering — Emprical software valiation Theory of compu-
s blame | et Program specfations

Additional Key Words and Phrases: gradual typing, blame

it to analyze R ACM Reference Format:

of contracts arj Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2021. How to Evaluate Ban Iur
utomate roceadaurels suffcient to Gl Types. . ACH g, Lan. 5, T Al 5 (Augot 2022 pages i ot
that trigger s

when scarchis) 1 DOES BLAME MATTER
design 1 ¥ [Matthews
cs Concepts| and Findler 2009; Tobin- Hochstadt and Felleisen 2006], “Well-typed components] an'tbe blamed
— Empirical turned the theorem into a slogan [Wadler and Findler 2009]. Academic systems (Reticulated
e [Vitousck et al. 2014, 2019, 2017] and Typed Racket [Tobin-Hochstadt and Felleisen 2006,
0; Tobin-Hochstad ct al. 2017]) come with sophisticated checking and blame assignment
ACM Referen sec. 2). Their academic creators embrace the idea that blame can help practicing pro-
e grammers find impedance mismatches, that is, disagreements between the type ascriptions of a
] software component and its behavior

Industrial implementors of gradual typing systems have almost completely ignored blame as-
Authors” addre gnment. Systems such as Flow, Hack, or TypeScript” exploit types for IDE actions and for finding

0 King. Northwest

< The original authe . A prog components a faulty one.
edu; Christos Di 2See hitps./flow.org, hitps:/ hacklang.org, and hitps:wrwwesypescriptlang org, respectively.

Authors” addresss: Lukas Lazarek, PLT @ Northwestern Univeriy, Evanston, linois, USA. lukas azarck@cecs.

Expe riment testi ng proced ures on real programs | e e

Dimeubs PLT @ Norhwestern Univerty, Evanson. o, USA. <hrdimo@norhwesterneda.
© 2020 Copyrigh
2475142172020 Permission o make digita o hardcopies o part o al of this work for personal or classtoom use is graned without e
hitps:/doi /1] that copies bear this notice and
e Fll ciaion o he Rt page.Copyrght frthird arty cmponnts o tis work st b hmered.For all othes s,
contactthe awner/author(s),

1 Copyright held by the owner/author(s).

1421/2021/5-ARTe

Proc. ACM Program. Lang. Vol 5. No. ICEP, Articl 65 Publiction date: August 2021

Data providing evidence to support or refute the hypothesis

A Hypothesis, by Example

-Q- Hypothesis Using the type system, error information can be translated into the location of type
N interface mistakes
= helper
main helper : (List (HashTable ..)) - Int
def helper(data):
data = json-unpack(...) for entry in data:
helper(data) age = data[“age”]

\ json-unpack-interface

[json—unpack :

X
JSON - (List_(HashTable ..)) ’ [Natu ral }

11
==
Type error:

json-unpack conflicting result type annotations
for json-unpack

10

A Hypothesis, by Example

Using the type system, error information can be translated into the location of type

Hypothesis ' A
yp interface mistakes
helper
mam<\ /,helper : (List (HashTable ..)) - Int
) | | def helper(data):
data = json-unpack(...) | 5>/ for entry in data:

helper(data) | I age = datal“age”]
AN

[

\ json-unpack-interface
json-unpack : {}
JSON - (List J_HashTable w)) ’ [Transient }

==
Type error:
conflicting result type annotations

json-unpack
for json-unpack
1"

A Hypothesis, by Example

N\ ! 7/
-O- Hypothesis Using the type system, error information can be translated into the location of type
N interface mistakes
= (helper \
main helper : (List (HashTable ..)) - Int
) def helper(data):
data = json-unpack(...) for entry in data:
helper(data) age = data[“age”]
L\ -

\ json-unpack-interface

[json—unpack :

X
JSON _. (List (HashTable ..)) ’ [Erasure }

Error: non-integer index to list
json-unpack stack: helper
main

A Procedure Reifying Our Hypothesis

Erasure

1. Run the program with Natural semantics to get blame

Natural-exceptions W

2. ldentify the (untyped) blamed component
3. Try to type that component™ (may fail) L[

Transient-exceptions

4. Type-check the program

4.11f it type-checks: goto 1
$lame
4.2 Otherwise: stop (success)

Creating an Experiment to Test Our Hypothesis

. [Greenman 2022] | |- 3

[Greenman et al. 2019, Greenman 2023]
Mutation

configuration Cj ------ ' [Lipton 1971, DeMillo et al. 1978]

SE ... for types
14

Creating an Experiment to Test Our Hypothesis

[... details omitted ...]

«

= '|—|L
0
o= |
__' X
vitation

[Lipton 1971, DeMillo et al. 1978]

15

[Transient last blame]

n O n O n O 1IN O 1N O
tHt NN NN A

[nJjosn aJ10W SOLIRUSIS JO 9

Results

R PO |
—t——f————1——t————f—t—1—1

L S L A
n O 1N O 1N O 1N O (|
- = NN M MN <FH S

[NJOSN SS9 SOLIRUSOIS JO ¢

16

How Blame Stacks Up

Transient last blame

Natural blame

o I I =
n O n O 1n O
< <t m MmN AN

[nJosn a10W SOLIBUSIS JO 9,

—

—
n o 1n O

Tttt
N O N O O W1 o I
— = N NN M <H S

[NJosn SSO[SOLIRUSIS JO %,

e

n O 1N O 1N O 1 O 1N O

<t F NN NN A
[nJosn al10W SOLIBUSIS JO 9,

TS T TR i S S TR Sl
L) L AL TN NELE RN L C A R

N O N O N o 1N o In
- = N NN M <H S

[NJOsn SSO SOLIBUSIS JO %,

17

Checks Without Blame Don't

Transient exceptions

Natural exceptions

—————————t————
n O n O n O 1n O wn O
NN NN -

[nJosn aJ10W SOLIRUSIS JO 9,

———f—

| B L N B SRR RECC.CEu] LR B
n O 1N O N O 1 O
- = NN M <A

[NJosn SS9 SOLIRUSIS JO %,

n O 1N O 1N O 1N O 1N O
tHt HF N M ANN A

[nJosn 210U SOLIRULIS JO 9,

O
+——t——t—t——t—t—t—t—t——t—t——t—f

_.j___<_~_4_4_.
n O 1n O 1N O 1N O 1N
— = NN F

[NJosn SSO[SOLIRUSIS JO %,

18

Takeaways

100
5 9ol
£ _
© 80 make sense?
g) I
5 70+
"g » X S L -
b 60" ,\ﬁ\o' °
— Il o
2, 504 e
wnn L
.8 404
cU 'y
S 30
3 204 he location of bugs.
G
= k
< 107
O T T T T T T
(4] S (%) < S <
.Q
S Q};Q &8 G}‘O %\:0 &0 <5
E S St bugging mode be a useful
E o & y&@ é@o & %@0 ugging mode be a usefu
g 407 6
OO > &
s 5 < S K¢

20

(Transient last blame]

L/

n O
< <

[NJOSN IO0W SOLIBRUSIS JO 9, [NJOSN SSO[SOLIRUSIS JO .xv(

Results

“ ¥ “ LI | S T L L] 1 =k @ T r L > " A
N O N O N O N O O N O O o W
N M AN N~ - — = NN M <t

21

Creating an Experiment to Test Our Hypothesis

‘ [Greenman 2022]

[Erasure } [Transient } [Natural }

22

Creating an Experiment to Test Our Hypothesis

\Q,l | |
| | |
: |
30,000 scenarios = | I @
] 0,
| = E
I (I -
IN —
e ~300 mutants
35555

2 million scenarios
(mutant X configuration)

23

Erasure Detects Most of the Bugs

100

% of scenarios producing error

90
80
701
60
50
404
304
201
104

24

