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Programming language theoreticians develop blame assignment systems and prove blame theorems for
gradually typed programming languages. Practical implementations of gradual typing almost completely
ignore the idea of blame assignment. This contrast raises the question whether blame provides any value to
the working programmer and poses the challenge of how to evaluate the effectiveness of blame assignment
strategies. This paper contributes (1) the first evaluation method for blame assignment strategies and (2)
the results from applying it to three different semantics for gradual typing. These results cast doubt on
the theoretical effectiveness of blame in gradual typing. In most scenarios, strategies with imprecise blame
assignment are as helpful to a rationally acting programmer as strategies with provably correct blame.
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1 DOES BLAME MATTER
Theoreticians of gradual typing have focused on blame theorems from the very beginning [Matthews
and Findler 2009; Tobin-Hochstadt and Felleisen 2006]. “Well-typed [components]1 can’t be blamed”
turned the theorem into a slogan [Wadler and Findler 2009]. Academic systems (Reticulated
Python [Vitousek et al. 2014, 2019, 2017] and Typed Racket [Tobin-Hochstadt and Felleisen 2006,
2008, 2010; Tobin-Hochstadt et al. 2017]) come with sophisticated checking and blame assignment
strategies (sec. 2). Their academic creators embrace the idea that blame can help practicing pro-
grammers find impedance mismatches, that is, disagreements between the type ascriptions of a
software component and its behavior.
Industrial implementors of gradual typing systems have almost completely ignored blame as-

signment. Systems such as Flow, Hack, or TypeScript2 exploit types for IDE actions and for finding

1The original authors got this word wrong. A program has many components; blame helps identify a faulty one.
2See https://flow.org, https://hacklang.org, and https://www.typescriptlang.org, respectively.
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typos in code. Then their compilers remove types and rely on the built-in safety checks of the
underlying language to catch any problems.

This contrast between theory and applications of gradual typing raises the question of
whether blame assignment adds any value to a gradually typed language, especially for
the benefit of the working programmer.

Given the long-standing academic interest in blame and its complete absence in industrial systems,
it comes as an even bigger surprise that the research literature and the industrial blog world do
not discuss any possible answers. Instead, when language designers make decisions concerning
this aspect, they seem to go one way or another without any scientific justification. Indeed, the
community has thus far failed to offer a method for evaluating blame assignment.
This paper’s first contribution is a method for evaluating the effectiveness of blame assignment

strategies in the gradual typing world. The top-level innovation is the idea of a rational programmer ,
that is, a programmer that acts only in response to available information (sec. 3). In the case of an
impedance mismatch, the available information consists of the error message and the current state
of the program. The rational programmer can hence use the former to change the latter—and this
systematic, information-driven process can be implemented and tested, at scale, on real programs.
Turning this idea into a scientific experiment requires overcoming major challenges: injecting
representative impedance mismatches; putting the various kinds of error information to comparable
use; and sampling the huge space of possibilities (see sec. 4 and, for details, secs. 5 through 7).
The paper’s second contribution is a set of results from applying the evaluation method to three

distinct checking regimes for gradual types and their blame assignment strategies in approximately
72,000 different scenarios (sec. 8): (1) Transient, i.e. Reticulated’s inlined type assertions and collabo-
rative tracking of typed/untyped boundaries [Vitousek et al. 2017]; (2) Natural, i.e. Typed Racket’s
use of a higher-order contract system and its blame assignment [Findler and Felleisen 2002]; and
(3) Erasure, i.e. the approach of industrial systems, which forgo type checks and blame in favor of
error messages from the safety checks of the underlying language. The results3 (sec. 9) are at least
somewhat surprising. In principle they validate the conjectures behind the work of theoreticians.
Run-time type checks and blame work together to help with the search for impedance mismatches
between the specified types and the behavior of untyped components. Natural’s wrapper-based
type checks and blame tracking are more useful than Transient’s type in-lined assertions and
“collective blame” tracking algorithm, which in turn are superior to Erasure. But, the application of
the method also indicates problems with the expectations of theoreticians. In contrast with the
theoretical differences between the methods, Natural is only marginally more useful than Transient,
and neither of the two checking and blame assignment methods are highly superior to Erasure.
Additionally, the cost of Transient’s blame can be huge. In turn, these problems suggest that, on
one hand, the existing theory does not properly predict the behavior of blame in real systems with
real programs, and on the other hand, the existing practice lacks data and alternative experiments
to assess the entire landscape of the pragmatics of blame.

2 HOW TO THINK ABOUT THREE BLAME SYSTEMS
The three blame strategies rely on three different ways of catching problems with types at run-time:
Natural, Transient, and Erasure. This self-contained section summarizes these options with one
illustrative example using (Typed) Racket syntax. The informed reader may wish to merely scan it.
Consider the program sketch in figure 1. Each box represents a module: the top bar lists the

name and whether it is using typed (blue) or untyped (red) syntax.

3The full data set is too large to be hosted on the web, so it is freely available upon request – along with the infrastructure
to obtain it. Please reach out at lukas.lazarek@eecs.northwestern.edu.
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How to Evaluate Blame for Gradual Types 68:3

pack-lib (at the top right) represents a library that provides, among others, a function pack.
The documentation says this function consumes JSON data and packages it in an association
list. In reality, though, the function returns a hash table instead of the association list.

types (at the top left) is one of three modules that overlays types onto this library. This specific
modules defines types in common to the two other typed libraries.

typed-pack-lib (at the mid-level on the left) imports pack and re-exports it as typed-pack
asserting that it is a function that consumes JSON and returns a list associating Symbols with
Strings. In other words, it formalizes the comments in pack-lib.

crypto-pack-lib (at the bottom left) also imports pack and assumes for it the same type
as typed-pack-lib. It applies the function in the definition of the exported crypto-pack
function, which encrypts its input before passing it to pack.

types : typed/racket

(provide Entry Entries)

(define-type Entry
(Pairof Symbol String))

(define-type Entries
(Listof Entry))

typed-pack-lib : typed/racket

(provide typed-pack)

(require types)
(require/typed pack-lib

[pack (-> JSON Entries)])

(define typed-pack pack)

crypto-pack-lib : typed/racket

(provide crypto-pack)

(require types)
(require/typed pack-lib
[pack (-> JSON Entries)])

(: crypto-pack (-> JSON Entries))
(define (crypto-pack d)

(pack (encrypt d _ _ _)))

pack-lib : racket

(provide pack _ _ _)

_ _ _ dependencies _ _ _
_ _ _ and definitions _ _ _

(define (pack d)
;; process JSON data and
;; package as a dictionary
;; (association list)
(make-hash _ _ _) ;; BUG!)

client : racket

(require json)
(require typed-pack-lib)
(reqired crypto-pack-lib)

_ _ _ other dependencies _ _ _
_ _ _ and definitions _ _ _

;; read data from files, pack
;; and share securely

(define public-data
(typed-pack
(read-json
"public-records")))

(define secret-data
(crypto-pack
(read-json
"medical-records")))

_ _ _ rest of client _ _ _

Fig. 1. One mixed-typed program, three interpretations
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client (at the bottom right) uses pack indirectly. Specifically, it goes through the two inter-
mediary typed modules to use it. Imagine a programmer who relies on the types in the blue
modules as checked documentation but prototypes the client in the untyped language.

The mistaken comment in pack-lib causes an impedance mismatch, with which each of the
three semantics deals differently. Under the Natural semantics, functions imported into and exported
from typed modules are wrapped in proxies that enforce the static type discipline with run-time
checks and track responsibilities [Tobin-Hochstadt and Felleisen 2008; Tobin-Hochstadt et al. 2017].
Thus, when pack is imported into a typed module, the run-time system checks that it is a function
and wraps it in a protective proxy, which in turn enforces the type of the function result with
run-time checks. Analogously, the run-time system wraps each exported function of a typed module
such as crypto-pack in a proxy that checks its arguments. These checks protect functions exported
from typed modules against applications to wrong arguments in untyped code.
As this analysis implies, if a return-type check fails, the problem is that the untyped module,

here pack-lib, supplied a function that is not a match for the type ascribed by the typed module.
Hence either the type at the boundary between the two modules is wrong or, if the programmer
trusts the type, the untyped module is at fault. If an argument-type check fails, responsibility lies
with client. After all, either the type it ascribes to the argument is wrong or the argument it
produced clashes with the type. Due to proxies, Natural can easily track the boundary, type, and
responsible parties that correspond to each check. Thus, in the example of figure 1, as pack returns,
the return-type check fails and Natural blames the boundary of pack-lib with typed-pack-lib
and crypto-pack-lib, respectively, for the two defines in client.

Under Transient, typed code is compiled so that all entry points to functions check their arguments
at run time and all function calls check their return values against the expected type [Vitousek et al.
2017]. Furthermore, Transient uses shallow checks, meaning they inspect only the top constructor of
a value. Since retrieving a value from within a structure (or list, array, hash table etc.) is performed
via a function call, the contents of a complex value are checked on a piecemeal basis.

As a result, the call to typed-pack does not signal an error because it takes place in the un-
typed client module, which is compiled in the usual manner. Because pack is called in the
crypto-pack-lib module, Transient’s inlined checks make sure that the imported pack is a func-
tion and that its result is a list. This last check fails in client’s call to crypto-pack.

In order to locate the corresponding boundaries for failed checks, Transient maintains a map from
values to the boundaries between typed and untypedmodules that they cross, plus the corresponding
types. In the example, the map records that pack crosses from pack-lib to typed-pack-lib and
from pack-lib to crypto-pack-lib with the type that appears in the required/typed forms in
the example. Since the failed check corresponds to the return type of pack, assuming that the type
is correct, the responsible party is the source of the two boundary crossings: pack-lib. In general
though, Transient blames more than one boundary. In fact, the theoretical work of Greenman
et al. [2019a] shows that for some programs Transient constructs a blame sequence that excludes
responsible parties and includes modules irrelevant to the failing check.

Under Erasure, the compiler checks the specified types and then discards them when it generates
code. The generated code includes run-time checks that ensure the dynamic safety of all operations
as specified in the underlying untyped language. Hence, neither the call to typed-pack nor the call
to crypto-pack signals an error due to the gradual type system. If at some later point client tries
to inspect the elements of the lists that typed-pack and crypto-pack are supposed to produce,
Racket’s safety checks signal a violation and point to some place in client. The information in
this exception, plus its stack trace, may help the programmer find the source of the impedance
mismatch between the specified types of pack in the two typed modules and its actual results.
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The following table summarizes the illustration. Each cell describes the result of evaluating the
column’s definition (in client) under the row’s semantics.

public-data secret-data
Natural error, blaming the boundary between error, blaming the boundary between

pack-lib and typed-pack-lib pack-lib and crypto-pack-lib
Transient no error error, blaming the boundaries between

pack-lib and typed-pack-lib/
pack-lib and crypto-pack-lib

Erasure no error* no error*
*but Erasure does signal an error on list access

3 WHAT IS A RATIONAL PROGRAMMER
The general challenge of evaluating blame is a methodological one. Unlike most current research
on programming languages, the question seems to call for empirical studies similar to those of the
human-computer interaction research area. At the same time, a significant result demands a large
amount of data. As Lazarek et al. [2020] recently demonstrated, the way around this dilemma is to
simulate a programmer algorithmically on a large set of programming scenarios.

(define-type NPR Nonpositive-Real)

server : racket

(provide neg-abs)

(define (neg-abs x) (- x)))

server-typed : typed/racket

(provide neg-abs)

(: neg-abs (Real -> NPR))
(define (neg-abs x) (- x))

layer : racket

(provide na-client)

(require (submod ".." server))

(define (na-client x)
(* 4 (neg-abs x))))

layer-typed : typed/racket

(provide na-client)

(require/typed
(submod ".." server)
[neg-abs (-> Real NPR)])

(: na-client (-> Real NPR))
(define (na-client x)

(* 4 (neg-abs x)))

main : typed/racket

(require/typed
(submod ".." layer)
[na-client (-> Real NPR)])

(define x (na-client -10))
(displayln x)

Fig. 2. A simplistic debugging scenario
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This paper generalizes Lazarek et. al.’s idea to the rational programmer . Like Mill [1874]’s homo
economicus, the rational programmer approximates the behavior of a software developer who
reduces time spent on a task by exploiting the available information. In the context of gradual
typing, the rational programmer has two pieces of information when an impedance mismatch
signals exceptional behavior: the error message and the state of the program. Hence, the most
rational procedure is to use the former to improve the latter. Specifically, the rational programmer
translates the Wadler–Findler slogan into a debugging method, searching for the source of the
impedance mismatch by adding type annotations to some of the untyped parts of the program
identified in the error. If the type checker rejects an annotation derived from the context, the
rational programmer has found the source of the problem. Otherwise, the rational programmer
concludes that the just-annotated parts are not the problem and re-runs the program—which must,
by the slogan, blame a different location for the problem. At this point, the rational programmer
can iterate the process. Measuring this simulated behavior on a large number of scenarios yields
data that is similar to data collected in a human-facing study.

The idea is best illustrated with an example in Typed Racket’s migratory type system. Imagine a
code base with dozens of modules in plain Racket. A developer who opens a module for maintenance
purposes must study the module’s design and, as part of the process, is bound to re-construct
the types that went into the module’s creation. To help future maintainers, the developer should
report these insights as type annotations. Over time, the code base migrates into a mix of typed
and untyped modules. As Tobin-Hochstadt et al. [2017] report though, it is equally common that
developers add typed modules that depend on the existing modules in the code base.

Now consider the concrete (and simplistic) example of figure 2. Initially the code base consists of
the two red modules on the left plus the blue module at the bottom; red indicates untyped, while
blue means typed. When a typed module imports an untyped module, it must assign types to the
imported identifiers for the type checker’s sake. Here main specifies that na-client consumes a
Real number and produces a non-positive one.4 A program execution ends in this error:

na-client: broke its own contract
promised: (<=/c 0)
produced: 40
in: (-> any/c (<=/c 0))
contract from: (interface for na-client)
blaming: (interface for na-client)
(assuming the contract is correct)

The referenced contract is the compilation of the type of na-client. The definitive hint is “blaming:
(interface for na-client)” with the caveat “(assuming the contract is correct).”

Assuming the rational programmer trusts the type of na-client, the next step is to inspect the
layer module and to equip it with type annotations. The result is the blue module in the middle,
and main’s import is now re-directed there by (submod ".." layer-typed). As predicted by the
theory, running the modified program (in the same way as before) yields a different error message:

neg-abs: broke its own contract
promised: (<=/c 0)
produced: 10
in: (-> any/c (<=/c 0))
contract from: (interface for neg-abs)
blaming: (interface for neg-abs)
(assuming the contract is correct)

4Racket’s type system reifies reasoning about subsets of numbers, not machine-level representations [St-Amour et al. 2012].
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Lastly, the rational programmer assigns types to server and re-directs the import of layer-typed
to (submod ".." server-typed). Now the type checker objects to the conjectured type of
neg-abs, i.e. the source of the impedance mismatch is found. How to fix it is a separate question.

Like homo economicus, the rational programmer is an approximation. People do not behave in a
purely rational manner as economic actors, and they also do not do so as software developers. The
point is not to deny the existence of “lucky hunches” programmers or “tinkering works” approaches
and so on. It is also not to claim that equipping entire modules with types represents an always
feasible approach.5 But, the concept of studying the idea of an economically rational actor has
produced benefits to the discipline of political economics, and this paper suggests that implementing
and studying the rational programmer will help language designers.

How to Turn the Idea of the Rational Programmer into a Methodology. Every time the
rational programmer succeeds, it is validation for programming language researchers. It shows
how their theorems, slogans, and tools help programmers. The example of blame assignment
mechanisms makes this point clearly. A blame-assignment mechanism provides information that,
according to programming language research, points toward the source of the problem.

When the rational programmer fails, it questions programming language research. Specifically,
it indicates limited predictive power of programming language theory with respect to the use of
languages in practice. Indeed, misleading predictions may even suggest flaws in language design.

In this way, the idea of a rational programmer implies an entire methodology for evaluating the
design of programming languages. At this point, this study of methods supplies many questions
whose answers might point to suitable evaluation methods:

(1) Does a language design provide information that can guide a rational programmer?
(2) Does the underlying theory suggest actions to the rational programmer?
(3) Can this guidance be formulated as an algorithm?
(4) Does the underlying theory lead to a hypothesis about the effects of these actions?
(5) Can this hypothesis be tested with a large-scale automated experiment?

Here is how the answers to these methodological questions lead to an evaluation method for
blame-assignment mechanisms:

(1) The design of blame-assignment mechanisms explicitly advertises the blame information as
helpful for debugging impedance mismatches.

(2) The error messages of blame-assignment mechanisms include suspect locations at the bound-
ary of typed and untyped code fragments. The Wadler–Findler slogan suggests that the
source of the problem is concealed due to a lack of types, so adding types to the untyped
fragment should lead to the source of the impendance mismatch.

(3) The step-by-step construction of paths based on error messages from gradual-typing checks
is clearly amenable to implementation, modulo the ascription of types to modules.

(4) The theory conjectures that blame assignment constrains the search space that a developer
must inspect to find the problem.

(5) Based on these insights, the remaining sections detail a large-scale automated experiment.

That said, using the method to conduct data-gathering experiments poses several challenges. The
specific challenges are spelled out in the next section, and the following three sections explain
ways of overcoming them.

5Adding types at the expression level, say, as in TypeScript should be considered well within bounds.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 68. Publication date: August 2021.



68:8 Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas

4 WHY IT IS HARD TO EVALUATE BLAME
Implementing the method of the preceding section poses three challenges. The first concerns the
comparison of the effect of blame on the rational programmer across three different mechanisms;
the second challenge is about finding a large number of representative debugging scenarios; and
the third is the resulting huge space of possibilities. A coincidental challenge is the disparity of the
implementations of gradually typed languages. To eliminate this variable, the authors use Racket,
which is thus far the only language in which all three major semantic variants are available in a
robust and comparable manner: Typed Racket implements Natural, Shallow Racket [Greenman
et al. 2021] Transient, and plain Racket Erasure.

The first challenge stems from the differences between the blame assignment mechanisms of the
three semantic variants. While Natural assigns blame to one component, Transient assigns blame to
a sequence of components. The Erasure semantics does not blame components per se, but it comes
with an exception location and a stack trace, which implicitly suggest fixes. Each strategy triggers
different reactions by the rational programmer (and real ones, too).
One way to reconcile these differences is to equip the rational programmer with modes that

represent the different types of information the rational programmer takes into account when
debugging a scenario. Intuitively, different blame strategies correspond to different modes of
operation. For instance, one Transient mode may assign types to the oldest element of a blame
sequence because it corresponds to the earliest point in the execution that can discover an impedance
mismatch. Another mode may opt to treat the sequence as a stack and add types to its newest
element. If both modes are equally successful in locating an impedance mismatch, measuring the
rational programmer’s debugging effort with each mode may answer which is the most effective.
However, attributing the success of the rational programmer to this or that blame mechanism

demands a careful analysis of the interplay between blame and the run-time checks of each gradual
type system. When a check fails, the Natural and Transient semantics assign blame instead of using
the information in the exception from the run-time check. But, the exception information may be
as useful to the rational programmer as a blame assignment. If this is the case, then blame per se
may not play a critical role for the rational programmer. Indeed, precisely because they do not
account for such confounding factors, Lazarek et al. [2020] cannot draw any conclusions about
blame specifically, despite advertisements to the opposite. Their experiment may conclude only
that so-called blame-shifting works, but they cannot attribute this conclusion to blame alone.

Modes offer a uniform way to compare the different semantics and isolate blame from the effect
of the semantics’ run-time checks. Specifically, the rational programmer comes with a blame mode
and an exception mode for Natural and Transient. If the blame mode succeeds in debugging a
program while the exception one fails, it is safe to conclude that blame is indeed beneficial for the
rational programmer. Put differently, the exception mode serves as the baseline for blame’s value
within a given semantics; if the programmer in this mode performs as well or better than the blame
one, a blame assignment mechanism might be useless.

An experiment must also rule out that the usefulness of blame assignment is sheer luck. Hence,
a completely random mode provides yet another necessary baseline.
The second challenge is to find a representative collection of programs with impedance mis-

matches.6 The impedance mismatches must represent mistakes that programmers accidentally
create and that the run-time checks of academic systems catch. In other words, the experiment
calls for a collection of mistakes in mixed-typed programs that is representative of those “in the
wild.” Unfortunately no such collection exists, and with good reason. The kind of mistakes needed

6Campora and Chen [2020] created a collection of Reticulated Python programs to evaluate their technique of fixing
mistakes in type annotations. Their collection does not come with type-level mistakes in the code itself.
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are typically detected by unit or integration tests; even if it takes some time to find their sources,
these mistakes do not make it into code repositories with appropriate commit messages.

An alternative is to generate a corpus of mistakes using mutation analysis [DeMillo et al. 1978; Jia
and Harman 2011; Lipton 1971], but conventional mutation analysis is useless. Mutation analysis
traditionally aims to inject bugs that challenge test suites, and it discards those that yield ill-typed
mutants as incompetent. Indeed, mutation analysis frameworks are fine-tuned to avoid them, and
yet, it is precisely those mutators that are needed for evaluating blame assignment strategies.
Based on a related experience, Gopinath and Walkingshaw [2017] write, “existing mutation

frameworks . . . do not generate the kinds of mutations needed to best evaluate type annotations”
and, worse, “it is surprisingly difficult to come up with mutants that actually describe subtle type
faults.” While the goal of their work—to evaluate the quality of types in Python—is unrelated to
blame, the mechanism is related. And their judgment confirms the experience of the authors.
An experimental analysis of blame needs a mostly new set of mutators. Roughly speaking, the

new mutators inject type errors into fully typed programs. Applying such a mutator to any typed
component produces a mutated component. A debugging scenario results from removing the types
from the mutated component. For the design of such mutators, the authors relied on their own
extensive programming experience though not without discovering a major pitfall: some of their
original mutators systematically produced programs that immediately revealed the source of the
impedance mismatch. All of the remaining ones yield interesting debugging scenarios (see sec. 6.3).
The third challenge is the explosive number of debugging scenarios that result from the combi-

nation of mutation-based scenario generation and mode-based analysis. All three factors—three
different gradual typing systems, the large number of mutants, and the number of debugging
modes—contribute possibly useful experimental data in a multiplicative manner. Hence, carried out
naively, the experiment would demand an infeasible amount of computational resources. A practical
execution has no option but to sample the space of scenarios, carefully ensuring reproducibility.
The next three sections explain how to overcome the three challenges in detail.

5 HOW TOMAKE COMPARABLE RATIONAL PROGRAMMERS
Section 3 explains how a migratory type setting helps with finding the source of an impedance
mismatch. Roughly speaking, it encourages the rational programmer to equip a module with types
if it is blamed in an error message. A sequence of such steps makes up a path in the lattice of type
migration [Takikawa et al. 2016]. The lattice describes the space in which the modes of the rational
programmer search for bugs (sec. 5.1).
Each mode receives different kinds of information and thus may construct different paths in

the lattice. As discussed in section 4, evaluating blame relies on comparing modes of the rational
programmer within the same semantics and across different semantics. Hence the research problem
is to develop modes for the rational programmer and to make them comparable even when they
correspond to different semantics and process different kinds of information (secs. 5.2 through 5.4).
Programmer effort relative to a fixed debugging scenario introduces another dimension along
which the modes become may be compared (sec. 5.5). With these notions in place, it becomes
possible to state the experimental questions and describes the process (sec. 5.6).

5.1 The Lattice and the Debugging Scenario
Takikawa et al. [2016] describe the set of all possible type migrations with a lattice. A program P is
a set of modules c̄ . Let a configuration s of P be the subset of c̄ that comes with type annotations.
These configurations of P are ordered by the subset relation and form a lattice L⟦P⟧ with 2 |P |

elements. The bottom of L⟦P⟧ is ∅, the top one c̄ itself; in between are the mixed-typed ones.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 68. Publication date: August 2021.



68:10 Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas

Applying a mutator to module c∗ of P acts like a homomorphism on the generated lattice. The
two lattices differ only in the mutated c∗. Given this formulation, debugging scenarios are those
configurations in this new lattice that do not contain the mutated module; at all other configurations,
the type checker points out the type-level mistake in the mutated c∗.

The actions of the rational programmer create an ascending chain—dubbed a trail—in L⟦P⟧. The
root s0 of a trail is the initial debugging scenario. If the program for some scenario si type-checks,
the rational programmer runs the program until it raises a run-time error. The rational programmer
then uses the information in the error to decide which module to equip with types. This choice
constructs scenario si+1 from si and thus lengthens the trail. A trail’s construction ends successfully
when it reaches a scenario that contains the mutated module because the type checker rejects its
typed version outright. At this point, the source of the impedance mismatch is identified.

5.2 The Natural Rational Programmer
The Natural semantics assigns blame to exactly one boundary. A blame assignment has the following
specificmeaning: the typedmodulemaymake incorrect type assumptions about the untypedmodule
in its interface, or the correct interface exposes a bug in the untyped module (or its dependencies).
Our setup rules out the first alternative (but see sec. 11), and therefore the rational programmer
extends the trail to a scenario that swaps out the untyped module for its typed counterpart.

Here is a rigorous definition.
A Natural blame trail is a sequence of scenarios s0, ...sn of a program P such that for all
0 ≤ i ≤ n − 1, si ⊂ si+1 and

si+1 \ si =

{
{blame ⟦P , si⟧} if si produces blame
{exception ⟦P , si⟧} otherwise

where blame ⟦P , s⟧ denotes the module (of P ) that s blames, and exception ⟦P , s⟧ denotes
the first untyped location in the stacktrace produced by s .

Note how, in the absence of “blame information” in the narrow sense, this definition interprets
“blame information” broadly, as in any information from a failing run-time check. In particular, the
definition rests on the two options for si+1 \ si . The first part reflects the rational programmer’s
use of blame to extend the trail. However, blame may not be available in some scenarios. The
second part accounts for those scenarios that produce errors from the runtime system before
any impedance mismatch can be detected. For example, the fully untyped configuration can only
produce such an error, e.g. from length receiving a boolean. Exceptions from the runtime do not
carry blame, so the rational programmer proceeds using the accompanying stacktrace instead.
When the buggy untyped module of a program is replaced by the typed counterpart, the type

checker fails because this module causes the impedance mismatch. Hence, a trail that ends at an
ill-typed scenario successfully pinpoints the location of the bug.

A Natural blame trail s0, ...sn in a lattice L⟦P⟧ is successful iff (the program for) its last
scenario sn does not type check. A Natural blame trail s0, .., sn in a lattice L⟦P⟧ is failing
iff (the program for) sn type checks and the trail cannot be extended further.

That is, failing Natural blame trails are those that end in a scenario that does not reveal the bug
statically, yet also does not blame an untyped module. Thus the rational programmer has no further
hints on how to continue the search for the bug.

While a successful Natural blame trail indicates that it pays off to heed blame assignments while
debugging the trail’s root, it does not answer whether blame is a critical piece of the rational
programmer’s process. For instance, typing the top of a failed run-time type check’s stack trace,
dubbed the location of the exception, might be as useful as typing the blamed one.
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To account for this situation, a new mode of the Natural rational programmer follows a migration
process based entirely on exceptions.

A Natural exception trail is a sequence of scenarios s0, ...sn of a program P such that for
all 0 ≤ i ≤ n − 1, si ⊂ si+1 and si+1 \ si = {exception ⟦P , si⟧}.

Using Natural exception trails, it becomes possible to factor out “blame information” in the narrow
sense from the broad one of the above definition.
The definition of success for a Natural exception trail follows that for a Natural blame trail.

Together, the definitions for the two modes allow the comparison of the usefulness of blame with
that of mere exceptions for debugging a scenario in the context of Natural semantics.

Given a program P and a root s0 in L⟦P⟧, Natural blame is more useful than Natural
exceptions for debugging s0 iff the Natural blame trail that starts at s0 is successful while
the Natural exception trail that starts at s0 is failing.

5.3 The Transient Rational Programmer
The Transient semantics assigns blame to a sequence of modules. The blame assignment says that
the value witnessing the impedance mismatch may have crossed the boundaries between elements
in the sequence, and that each crossing checked the value’s type in a shallow manner.
This ambiguity in Transient blame raises the question of how the rational programmer should

react when the language produces a blame sequence. Our answer is that the rational programmer
has at least two reasonable options. The first one is to select the untyped module that is added to
the blame sequence first and assign types to only that one—after all, if fully checked, the types of
this first module should be able to detect an impedance mismatch earlier in the evaluation of a
program than the later ones. The second option is to select the module that is added to the blame
sequence last, effectively interpreting the blame sequence as a boundary-aware stack.

These two modes of rationalizing give rise to two different notions of trail.
A Transient-first blame trail

/
Transient-last blame trail is a sequence of scenarios s0, ...sn

of P where for all 0 ≤ i ≤ n − 1, si ⊂ si+1 and

si+1 \ si =

{
{first ⟦multiblame ⟦P , si⟧⟧ /

last ⟦multiblame ⟦P , si⟧⟧} if si produces blame
{exception ⟦P , si⟧} otherwise

where first ⟦multiblame ⟦P , s⟧⟧/last ⟦multiblame ⟦P , s⟧⟧ is the first/last module, respec-
tively, that Transient adds to the blame sequence for s .

The definition of Transient exception trails is analogous to that for Natural. It is used as a baseline
for Transient-first and Transient-last blame.7

5.4 The Erasure Rational Programmer
Since gradually typed languages with Erasure semantics do not come with blame assignment, a
rational programmer can only hope that the underlying safety checks and their exceptions are
helpful. Thus, the Erasure rational programmer has a single mode, the Erasure exception mode,
and its definition follows that for the Natural exception mode.

5.5 The Programmer Effort
In addition to success and failure information for the various trails, the experimental test bed can
record the number of modules a rational programmer has to equip with types along each trail
(|sn \ s0 |). This number, the debugging effort, can serve as an additional metric to compare modes.
7A reader may wonder whether the rational programmer should just equip all modules in the Transient blame set with
types. That might accelerate the search for the impedance mismatch, but if so it would also impose a large migration cost.
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Comparing the effort of different modes of the rational programmer can illuminate the compar-
itive effectiveness of the three gradual typing systems. If, for instance, both Natural blame and
Transient-first blame trails are successful for the same scenario, the two modes of the rational
programmer can compete to see which one debugs the scenario with less effort. In general, if the
effort distribution for a mode of the rational programmer has a shorter tail and more volume around
smaller values compared to the effort distribution of another mode, then the first mode is probably
the more effective of the two.

Measuring effort can also reveal whether the observed effectiveness of the rational programmer
is an artifact of pure chance. In particular, the effort distribution for one mode can be compared
with that of the random mode that ignores error information entirely and instead selects which
module to type randomly. Since each mutant has a finite number of modules, random mode trails
are always successful. However, the random mode’s effort distribution should be thinly spread out
across the range of trail lengths possible in the set of debugging scenarios. In contrast, the effort
distribution of other modes should be quite different if their effectiveness is not coincidental.

5.6 The ExperimentalQuestions
Trails and their properties provide the tools for a rigorous examination of blame for Natural,
Transient, and Erasure. In line with the discussion so far, the test bed collects data to answer three
initial questions for interesting debugging scenarios:
Q1 Is blame useful in the context of Natural?
Q2 Is first blame useful in the context of Transient?
Q3 Is last blame useful in the context of Transient?
Furthermore, the experiment allows a comparison of the relative usefulness of blame information:
Q∗ Is blame for X more useful than blame for Y (for X, Y in Natural, Transient, or Erasure)?

Natural Transient Erasure
Blame Q1/Q∗

First blame Q2/Q∗

Last blame Q3/Q∗

Exceptions Q1 Q2/Q3 Q∗

The nearby table summarizes how each question
relates to different kinds of trails/modes of the ra-
tional programmer. For example, experimental ques-
tion Q1 asks whether blame is valuable for Natural
and the experiment uses the Natural blame and ex-
ception trails to answer it, so Q1 shows up in the
cells for Natural blame and Natural exceptions.

In detail, the answer toQ1 demands a comparison of the success of the Natural blame and Natural
exception trails for all debugging scenarios. The first step is to construct each mutant’s scenario
lattice and identify their debugging scenarios. The test bed then extends the trails that start from
those roots according to the Natural-blame programmer. If no scenarios can be added to the trail,
the test bed checks whether the last scenario of the trail type-checks or not. If it does not, the
Natural-blame trail is successful; otherwise it is failing. Figure 3 summarizes this experimental
process for one mode of the rational programmer and connects it with the mutations from section 6.
The process is repeated for the same roots with the Natural-exceptions mode. After completing,
the test bed reports the success/failure results of the trails to determine the proportion of scenarios
where Natural-blame is more useful than Natural-exceptions. Question Q1 has a positive answer
if a root exists where the above is true because it is evidence that there is at least one interesting
scenario that the rational programmer manages to debug because of blame information. The process
is analogous for Q2 and Q3, using the respective modes.

For Q∗, the process is a bit more involved. Answering this question calls for a comparison of the
percentage of scenarios where one mode is more useful than the other and the inverse. For instance,
deciding whether blame for Natural is more useful than Transient-first requires comparing the
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Fig. 3. The experimental process for one mode of the rational programmer

percentage of scenarios where the first is more successful than the second with the percentage
where the second is more successful than the first. Repeating the whole process for every pair of
modes produces a complete picture of the comparative usefulness of blame.

6 HOW TOMAKE LOTS OF MISTAKES
Putting the rational programmer to work means generating many mutants and turning those into
debugging scenarios. The process must start with a suitable collection of representative programs
(sec. 6.1). Since existing mutators do not generate useful mutants, the next step is to develop new
mutators (sec. 6.2) and to validate their suitability on the benchmarks (sec. 6.3).

6.1 The Experimental Benchmarks
The benchmark programs for a rational-programmer experiment must

(1) vary in size, complexity and purpose;
(2) be fully typed so that the choice of types is fixed;
(3) take advantage of the variety of typing features of a gradually typed; and
(4) have a decent number of type-able modules and a variety of module dependency graphs

because mixing of typed and untyped code in Typed Racket takes place at the module level.
Greenman et al. [2019b]’s collection of Typed Racket programs for systematically measuring

the implementation’s performance satisfies these criteria. The benchmark suite consists of fully
typed, correct programs, written by a number of different authors who had maintained and evolved
these programs over time. The programs range widely in size, complexity, purpose, origin, and
in programming style. They rely on many Typed Racket features: occurrence typing [Tobin-
Hochstadt and Felleisen 2010], types for mutable and immutable data structures [Prashanth and
Tobin-Hochstadt 2010], types for first-class classes and objects [Takikawa et al. 2012], and types for
Racket’s numeric tower [St-Amour et al. 2012]. Finally, all of the programs are deterministic, so
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Table 1. Summary of benchmarks

name description author loc mod.
acquire object-oriented board game implementation M. Felleisen 1941 9
gregor utilities for calendar dates J. Zeppieri 2336 13
kcfa functional implementation of 2CFA for λ calculus M. Might 328 7
quadT converter from S-expression source code to PDF M. Butterick 7396 14
quadU converter from S-expression source code to PDF B. Greenman 7282 14
snake functional implementation of the Snake game D. Van Horn 182 8
synth converter of notes and drum beats to WAV V. St-Amour 871 10
take5 mixin-based card game simulator M.Felleisen 465 8
tetris functional implementation of Tetris D. Van Horn 280 9
suffixtree algorithm for common longest subsequences between strings D. Yoo 1500 6

any changes in the programs’ behavior between runs can be solely attributed to the actions of the
rational programmer.

Table 1 describes the ten benchmark programs that meet all the criteria, and furthermore come
with the largest dependency graphs. This additional filter reflects that Typed Racket demands type
assignments for entire modules, and so finding errors in benchmarks with small dependency graphs
would almost be trivial for the rational programmer.

6.2 How to Mutate Software
A mutator performs a localized syntactic change to a code base. The result is a mutant.

For the evaluation of a blame strategy, mutators must produce type-level mistakes that the
run-time checks of gradual typing systems or the safety checks of the underlying language can
detect. Once detected, the rational programmer should be able to locate the mistake by gradually
adding types to blamed modules. In other words, the suitability of the mutators hinges on their
ability to generate interesting debugging scenarios (see sec. 6.3).
Table 2 describes 16 mutators that satisfy these constraints. As the last column indicates, some

specialize or generalize Lazarek et al. [2020]’s mutators, which in turn are borrowed from the
vast literature on mutation testing [Jia and Harman 2011]. Only two are directly inherited; many
mutators are brand new. For the latter, the authors relied on their decades-long experience of
making type-level mistakes in Typed Racket, some of which take non-trivial effort to debug.

(: deal-with [(U Real False) -> Real])
(define (deal-with optional-result)

(if optional-result
(+ optional-result OFFSET)
DEFAULT))

(define DEFAULT 40)
(define OFFSET 11)

Fig. 4. Example program using occurrence typing

Most of the mutators are self-explanatory.
The first six apply to all gradually typed lan-
guages; the next six to those that include classes
and objects. The last four target distinguishing
features of Typed Racket’s type system, specif-
ically its sophisticated type system. For exam-
ple, one mutation produced by arithmetic re-
places a + with a - in an attempt to change the
type of the arithmetic expression; +’s result is
a Positive-Integer when all arguments are
positive integers, while - yields Integer [St-
Amour et al. 2012]. Similarly, the other three
aim to confound the occurrence type system.
Figure 4 illustrates how this confusion works. The function deals with an input that is either a
Real or #false; the conditional deals with the first type in the then branch and the second type
in the else branch. If a mutator wraps (not ·) around the test of the conditional, the resulting
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Table 2. Summary of mutators

name description example origin

constant
swaps a constant with another of different
type

5.6 → 5.6+0.0i +

deletion
deletes the final expression from a sequence (begin x y z)

→ (begin x y)
+

position
swaps two sub-expressions (f a 42 "b" 0)

→ (f a 42 0 "b")
++

list
replaces append with cons append → cons new

top-level-id
swaps identifiers defined in the same module (f x 42) → (g x 42) new

imported-id
swaps identifiers imported from the same
module

(f x 42) → (g x 42) new

method-id
swaps two method identifiers (send o f x 42)

→ (send o g x 42)
new

field-id
swaps two field identifiers (get-field o f)

→ (get-field o g)
new

class:init
swaps values of class initializers (new c [a 5] [b "hello"])

→ (new c [a "hello"] [b 5])
new

class:parent
replaces the parent of classes with object% (class a% (super-new))

→ (class object%
(super-new))

new

class:public
makes a public method private and vice versa (class object%

(define/public (m x)
x))

→ (class object%
(define/private (m x)

x))

++

class:super
removes super-new calls (class a% (super-new))

→ (class a% (void))
new

arithmetic
swaps arithmetic operators + → - ++

boolean
swaps and and or and → or ‡

negate-cond
negates conditional test expressions (if (= x 0) t e)

→ (if (not (= x 0)) t e)
‡

force-cond
replaces conditional test expressions with #t (if (= x 0) t e)

→ (if #t t e)
new

‡ inherited from, + specializes one of, ++ generalizes one of Lazarek et al. [2020]’s mutators

mutant is ill-typed and, when run, this function eventually causes a run-time type check to signal
an impedance mismatch.

6.3 Are These Mutators Interesting
A type-level mutation is interesting (1) if the type checker rejects the fully typed version of the
mutant, (2) running the mutant with all type annotations removed raises a run-time error, and (3)
that error’s stack trace contains source locations from at least three modules.

Here is the rationale for these three conditions:
(1) An impedance mismatch is a clash between the type ascription of one module’s imports and

another module’s exports. Hence, type checking should fail for an interesting mutant.
(2) The goal of a comparative evaluation is to give the rational programmer a chance to debug the

same scenario using different pieces of information. In the case of gradual typing semantics,
a meta-theorem due to Greenman and Felleisen [2018] says that if a program raises an
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Each plot shows a breakdown of interesting mutants by mutator. Each mutator corresponds to a
bar representing the number of interesting mutants generated by that mutator. The counts are cut
off at 50, so those bars reaching the edge of the plot represent 50 or more interesting mutants.

Fig. 5. Breakdown of interesting mutants by mutator, per benchmark.

exception under Erasure, it also errors under all other semantics. Hence, a comparison of
blame information insists that an interesting mutant raises a run-time exception under Erasure.
Note While this choice favors Erasure over Transient and Natural and, for the same reason,
Transient over Natural, some form of bias towards one or the other semantics is unavoidable.
Tipping the scales in favor of the theoretically weakest semantics yields the most stable
results. Section 9 includes some further discussion of this choice.

(3) If the evaluation of a mutated module immediately raises an exception because of the changes,
there is no work for the rational programmer. Indeed, if the stack trace contains source
pointers to two modules, the scenario is still uninteresting. Every ordinary benchmark
program comes with a main module that acts as a driver, whose source is guaranteed to
be included in the stack trace. Hence, the definition of interesting mutation insists on the
presence of three different modules in the stack trace. This guarantees that the debugging
scenario demands a sufficiently sophisticated effort, due to the interaction between the buggy
module with its context. In these cases, the rational programmer must contend with at least
two modules involved in a faulty interaction.

The definition of interesting mutants creates a powerful filter. All together, the listed mutators
produce 16,800 interesting mutants across all benchmarks; see figure 5 for an overview. Broken
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down by benchmark, the mutators produce at least 40 interesting mutants for every benchmark, and
these mutants originate from at least four different mutators per benchmark. Thus, the mutators
result in a sizable and diverse population of scenarios for every benchmark. Furthermore, every
mutator contributes interesting mutants in at least one benchmark. Some mutators apply only
to a few benchmarks, because they target rather specific features; for instance, the class-focused
mutators are mainly effective in a program that makes extensive use of object-oriented features.

The goal of filtering for interesting mutants guided countless iterations of adding, removing, and
refining mutators in table 2. For an illustrative example, consider a candidate mutator that casts
the tests of conditionals to the Any type. Like the example explained at the end of the preceding
subsection, this mutant would suppress occurrence typing. But, it would not be interesting because
an execution would not raise a run-time error; instead the function would process its input as if
nothing had changed. Hence this candidate mutator is not included in the final set.

7 HOW TOMAKE THE EXPERIMENTAL SPACE TRACTABLE
As is, the chosen mutators generate approximately one million debugging scenarios for the chosen
benchmarks. This number of scenarios is far too large to even identify the interesting ones among
them. Furthermore this population is heterogeneous; scenarios come from different mutants, and
the mutants are the result of different mutators applied to each benchmark.

To render the experiment computationally feasible and statistically sound, it becomes necessary
to sample this large space in a uniform and stratified manner. The first two levels of stratification
group mutants first by benchmark and then by mutator, making sure that the sample within each
benchmark reflects the diversity of mutants with respect to the mutators that generated them.
Specifically, the experiment samples 80 interesting mutants per benchmark, evenly-distributed
across all of the mutators that contribute mutants for the benchmark. Some benchmarks have less
than 80 mutants with interesting scenarios, in which case the only choice is to include them all. The
result is a total of 752 interesting mutants across all benchmarks. Finally, the third level of sampling
randomly draws 96 debugging scenarios from each configuration lattice with replacement. The
final sample thus consists of 72,192 interesting scenarios.

8 WHAT ARE THE OUTCOMES OF THE EXPERIMENT

The upper bound margin of error is 0.02%.

Fig. 6. Percentage rates of success

The test bed for executing the experimental process uti-
lizes a machine with two Intel Xeon Gold 6258R pro-
cessors (28 doubly-threaded cores each) and 500GB of
memory. Each debugging scenario had a 4 minute time-
out and a 6GB memory limit. Running the experiment on
all debugging scenarios took over 30,000 compute hours
or roughly three-and-a-half compute years.
Figure 6 summarizes the overall success rates of ev-

ery mode. The success rates illustrate a few points that
underlie the rest of the analysis. The first notable piece
of information from this figure is that every mode has
failed debugging scenarios, not just Erasure. This should
not come as a surprise to the astute reader. Running a
rational programmer mode on a scenario may result in an
exception that carries no useful information about which
module to equip with types next. For instance the stack
trace of the exception may not contain frames from any untyped module of the program. This can
happen at any point along a blame trail, causing it to fail.
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Each plot depicts a head-to-head comparison of the mode named above the plot vs. every other mode. The (green)
portion above 0 is the estimated percentage of scenarios where the named mode is more useful than the other. The
(red) portion below 0 is the estimated percentage of scenarios where the named mode is less useful than the other.
The upper bound margin of error is 0.02%.

Fig. 7. Usefulness comparisons

While most blame trail failures follow the above pattern, a few do not. Breaking down the failure
reasons for Natural blame (1748 in total) reveals an additional cause. For a small set of debugging
scenarios (40), Natural produces a run-time type error blaming a non-buggy already-typed module.
All these cases are due to known open issues with Typed Racket and class contracts.
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Each diagram shows the overlap of the successful scenarios for three modes. For example, in the leftmost diagram, all
three modes succeed on the same scenario 75.7% of the time, only Natural and Natural exceptions succeed on 11.6%
of the scenarios, only Natural and Erasure succeed on 1.8%, and Natural alone succeeds on 9.2%. The upper bound
margin of error is 0.02%.

Fig. 8. Blame usefulness analysis

In Transient, similar to Natural, most failures are due to unhelpful exception information (1851
for both Transient first and last blame). However, Transient also has a substantial number of
failures because scenarios hit the time and/or memory limits of the experiment (~770 scenarios).
Additionally, there are nearly 1,000 cases where Transient reports an empty blame set, leaving the
rational programmer without hints about how to proceed. Sections 9.5 and 9.6 address these causes
of failure for Transient and how they affect the experiment.

The second key observation from figure 6 is that the modes that use blame all outperform those
that do not. In particular, Natural and both of Transient’s blame modes succeed in 85 - 90% of the
scenarios, while their corresponding exception modes succeed in less than 80% of them, and so too
for Erasure. The only exception is that the random programmer always succeeds; the figure omits
this mode because it just reflects the fact that every scenario has finitely many modules, so the
random programmer eventually types the buggy module.
Figure 7 depicts a head-to-head comparison of every mode’s performance against every other

mode (except Random). The comparison answers the four questions from section 5.6. Each plot
shows the proportion of scenarios where one mode performs better or worse than each other mode.
In particular, each bar above zero represents the proportion where the plot’s named mode succeeds
and the mode on the x-axis fails; the corresponding bar below zero represents the proportion of
the inverse case. For example, the plot titled “Natural” shows that Natural outperforms Natural
exceptions in about 11% of the scenarios, and the inverse (Natural performs worse than Natural
exceptions) never happens. Similarly, the plot titled “Transient last blame” shows that Transient
last blame outperforms Natural exceptions in about 9% of the scenarios, but conversely it performs
worse than Natural exceptions in about 2% of the scenarios.

The figure answers questions Q1, Q2, and Q3 affirmatively. In all three semantics, blame modes
outperform their corresponding exception mode by ~10%. The Natural exceptions mode is never
more useful than Natural blame, and Transient exceptions are more useful than Transient first and
Transient last blame in a small percentage (less than 1%) of the scenarios.

Figure 7 also provides answers for Q∗. Blame for all three semantics is significantly more useful
than Erasure exceptions—by almost 12% for Natural and almost 9% for Transient. Natural blame is
more useful than both versions of Transient blame by a small percentage (about 4%). The Transient
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first and Transient last blame are practically indistinguishable. Finally, Natural exceptions are more
useful than Transient exceptions, although only in a small percentage of scenarios (about 2.5%). A
rare few scenarios (about 0.5%) show the opposite, despite the theoretically advantageous additional
checks of Natural.

An alternative way to understand the answers for questionsQ1 toQ3, is to analyze the success of
each semantics in comparison to Erasure. Figure 8 depicts the results of this analysis. Specifically,
the figure shows one Venn diagram per mode of the rational programmer that uses blame. Each
diagram shows the overlap of successful scenarios for the blame mode, its corresponding exception
mode, and Erasure. For example, the leftmost diagram (Natural) shows that all three modes succeed
on 75.7% of the scenarios, only Natural and Natural exceptions succeed on 11.6% of the scenarios,
only Natural and Erasure succeed on 1.8%, and Natural alone succeeds on 9.2%. This analysis
highlights the success trade-offs each semantics offers against Erasure, with and without blame. For
instance, the analysis for Natural clearly illustrates that, when choosing between Natural blame,
Natural exceptions, and Erasure, Natural blame is the absolutely most successful: all of the successes
of the other two modes are subsets of Natural’s successful scenarios. On the other hand, Transient’s
blame modes fare similarly but the choice is not so clear-cut.
Turning to programmer effort, figure 9 shows the estimated distribution of blame trail lengths

for the interesting debugging scenarios. There are two immediate take-aways from the figure. First,
the effort for successfully debugging interesting scenarios (in green) for the random mode of the
rational programmer is highly spread out, as expected. In contrast, in the other modes, successful
effort coalesces at the left side of the plot, meaning that in most cases the programmer needs to
type a single module to debug a scenario.
Figure 10 provides head-to-head comparisons of effort. The comparison between two modes

boils down to the difference in length between their trails for all scenarios where they both succeed.
Hence, each plot in the figure shows the distribution of scenarios with length differences ranging
from -3 (the first mode’s trail is 3 steps shorter than the second’s) to 3 (the first mode’s trail is 3
steps longer than the second’s). The figure offers several insights about how modes compare in
terms of effort that complement the insights about how they compare in terms of success rates
from figure 7. First, Natural blame rarely produces shorter trails than Natural exceptions, and
occasionally produces slightly longer ones. Hence, the experiment provides evidence that blame
helps the rational programmer debug more scenarios but does not shorten the debugging process
compared to exceptions. Second, Natural relatively often (close to 8% of the scenarios) produces
shorter trails than both Transient blame modes, and sometimes the trails are significantly shorter.
Finally, Transient’s blame modes share the characteristic with Natural that blame sometimes
produces longer trails than their corresponding exception modes.

9 WHAT CAN PROGRAMMERS LEARN
Interpreting the numeric summaries and aggregations of the preceding section demands an intuitive
understanding of what blame trails look like in practice. A concrete example of blame trails and
programmer modes is a good basis for synthesizing this kind of intuition.

Figure 11 summarizes one particularly interesting debugging scenario from the take5 benchmark.
The module dependency graph of this benchmark is shown in the top left of the figure. Its mutated
player module provides a method under a different name than the client module, dealer, expects.
In Typed Racket’s gradual type system, this mistake corresponds to a type-impedance mismatch—
and all rational-programmer modes come to different conclusions.
The rest of figure 11 illustrates the blame trails for every mode of the rational programmer

(except Random) for the debugging scenario in two different ways:
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Each plot depicts the distribution of trail lengths for a given mode across all benchmarks. The upper bound margin of
error is 0.05%.

Fig. 9. Programmer effort
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Each plot depicts the distribution of scenarios with trail length differences ranging from -3 to 3. A −x difference
denotes that the first mode’s trail is x steps shorter than the second mode’s trail for the same scenario; a positive
difference denotes the inverse. A difference of∞ indicates one mode’s trail succeeds while other mode’s fails. The
15|60 on the y-axis indicates that the axis is truncated between 15 and 60%. The upper bound margin of error is 0.03%.

Fig. 10. Effort comparisons

• The top right shows the blame trails produced by every mode of the rational programmer
as paths through the configuration lattice starting at the root (leftmost) configuration. Each
configuration is represented by a sequence of boxes corresponding to modules in the program,
with an x indicating that the module is typed. The mutated module has a gray box.

• The table in the middle expands the information in the diagram with the details of every
step in each trail. Every row of the table represents the trail of one mode. The middle-three
columns depict the steps of a blame trail:
Root describes the result of running the root configuration in this row’s mode.
Step 1 is the result of the rational programmer’s reaction to the outcome of running the root.
Step 2 shows the result of reacting to the outcome of running step 1 configuration, if any.
Finally, the Success? column summarizes whether exploring the trail succeeds.

To make this table concrete, compare rows 1 and 4. The first one shows that running the root
configuration under the Natural-blame mode fails due a dynamic type check and blames the player
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the dependency graph the paths taken by each mode through the configuration lattice

Root Step 1 Step 2 Success?
Mode config result stack config result stack config result

Natural main τ× ✓
-blame player main

Transient dealer dealer τ× ✓
-first-blame dealer player
and dealer dealer
-last-blame main

Erasure dealer dealer x
dealer dealer
dealer dealer
main main

Natural main x
-exceptions main

Transient dealer dealer x
-exceptions dealer

dealer
main

Legend
config Each box corresponds to a module and indicates (with x) if it is typed. The mutated module is gray.

result symbol denotation
the configuration signals a dynamic type check failure, blaming the module(s) below

τ× the configuration does not type check
the configuration fails a check by the runtime system
the configuration signals a dynamic type check failure for which blame is ignored

Fig. 11. An example scenario from take5, with every mode’s resulting trail.

module; typing that module and running again then results in a type error, and hence the trail is
successful. By contrast, the Natural-exceptions mode (row 4) yields stack information for the root
configuration that is unhelpful; it identifies only main, which is already typed. Hence, this trail
immediately gets stuck.

In short, this figure concretely demonstrates how the rational programmer behaves in different
modes. In this case, the behaviors differ from each other in five of the six modes (the two Transient
blame modes behave the same). The reader may keep the illustration in mind for the following
discussion of the numeric results.
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9.1 Interpreting the Results
The results of the experiment suggests a number of high-level conclusions about blame strategies
in the gradual typed world. First, all modes with run-time type checks have a fairly high success
rate, regardless of whether these checks assign blame or throw plain exceptions. That said, the
success rates of the modes without blame are on par with that of the Erasure mode. Second, error
messages with blame assignments are more helpful than those without. The results also indicate,
though, that blame is not critical in a majority of cases, and these two points together suggest
investigating whether run-time type checking and blame tracking are worth the performance cost.
Third, the Natural approach fares better than the Transient approach, but only by a small margin.
Since Natural offers complete and sound path-based blame while Transient offers incomplete but
sound heap-based blame [Greenman et al. 2019a], the results call for a study concerning the relative
strengths of the two models of blame. Fourth, given that Transient’s sound but shallow run-time
type checks do not seem to hamper debugging, a language that supports both Natural and Transient
might help reduce the number of wrappers and thus address the well-known performance issues of
sound gradual typing [Greenman 2020, chapter 6]. Fifth, the fact that both modes of the Transient
rational programmer are equally successful suggests that returning the whole blame sequence may
not be beneficial. If so, Reticulated Python could limit the size of blame sequences to attempt to
mitigate its serious performance problems (see below).

9.2 What Are the Threats to Validity?
The validity of these conclusions is threatened in two distinct ways. The first set of threats concerns
aspects of the experimental setup discussed in preceding sections: (i) the representativeness of the
benchmarks; (ii) the relation between the mutations and real programming mistakes; and (iii) the
sampling strategy. Although the experimental setup attempts to mitigate these threats, the reader
must keep these limitations in mind when drawing conclusions.

The second set of threats questions four rather different aspects. To start with, the realism of the
rational programmer itself is questionable (sec. 9.3), as is the definition of “interesting scenarios”
(sec. 9.4). The remaining threats are about the accuracy and cost of Transient blame, respectively
(secs. 9.5 and 9.6).

9.3 Threat: Is the Rational Programmer Realistic?
Like homo economicus, which idealizes the actual behavior of a participant in an economy for the
sake of mathematical modeling, the model of a rational programmer idealizes the actual debugging
behavior of a software developer for the sake of a systematic, large-scale analysis. This idealization
comes with advantages and disadvantages. In the economic realm, mathematical models have
provided some predictive insights into the market’s behavior; but as behavioral economics has
shown more recently [Henrich et al. 2001], the mathematical abstraction of a rational actor makes
predictions also quite unreliable in some situations.8 Just like an ordinary consumer or producer,
an actual software developer is unlikely to stick to the exact strategy proposed here. When this
happens, the predicted benefits of blame assignment may not materialize. Indeed, the authors’
personal experience suggests such deviations, and it also suggests that deviating often leads to dead-
ends. To make a true judgment of the usefulness of the rational-programmer idea, the community
will need much more experience with this form of evaluation and relating the evaluation to the
behavior of working programmers.
Relatedly, the experimental setup hides how a rational programmer ascribes types to extend a

trail. When the run-time checks signal an impedance mismatch in the real world, a programmer

8It has misled economists to focus on just mathematics, though this problem is not relevant here—tongue firmly in cheek.
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does not have a typed module ready to swap in. Instead, the programmer must come up with
the next set of types, which means making choices. It is usually possible to consistently assign
types to variables in a module in several different ways. The maintenance of the benchmarks
over many years has driven home this lesson but, fortunately, it has also shown that the types
are in practice somewhat canonical. The authors therefore conjecture that different real-world
programmers would often come up with equivalent type assignments during debugging sessions.

9.4 Threat: Is the Definition of Interesting Scenarios Reasonable?
Section 6.3 defines criteria for interesting mutations, one of which limits the scenarios under
consideration to those with mistakes that raise a run-time error under Erasure. In other words, the
experiment is Erasure-biased: it only considers the usefulness of blame when the safety checks
of the underlying language alone are sufficient to detect the mistake. In reality, some mistakes
require run-time type checks to be detected [Greenman et al. 2019a], and it is possible that blame
has more to offer for these kinds of mistakes. If that is the case, then the results of the experiment
on a population of scenarios including such mistakes should be different.
In fact, a variation of the experiment provides some preliminary evidence that this difference

may be significant. Thus far, the variation of the experiment covers only three of the benchmarks
but broadens the selection of scenarios to include any that raise run-time errors under Natural,
regardless of other semantics. The results from this small experiment suggest that without Erasure-
bias, Natural blame may be much more useful than all of the other modes.

9.5 Threat: Why Does Transient Lose Blame?
The execution of the experiment reveals that Transient produces empty blame sequences for 967
scenarios. An empty blame sequence means a lack of boundary crossings for the witness value.
In theory, an empty sequence should not occur, because it means a typed module is blaming
itself—something that can happen only if the type checker (or system) is unsound.
An investigation of these empty blame cases reveals problems with tracking blame for higher-

order functions and conversely suggests three improvements for the Transient algorithm. To
illustrate, consider the call (filter f xs). The first suggestion is that the blame map should know
that inputs to fmay have come from the xs list; concretely, the blame-map entry for f should point
to xs as a parent. Second, there should be two parents for f instead of one, because both xs and
filter are responsible for sending correct input to f. Third, the blame map should work equally
well in programs that rename filter or that replace the identifier with an expression. This third
point suggests a need for type-like specifications that guide the construction of the blame map,
instead of the identifier-based matching in Reticulated and Shallow Racket.

9.6 Threat: Is the Transient Blame Assignment Mechanism Realistic?
The results in section 8 also show that the cost of Transient blame is quite high. Under the Transient
semantics, some of the debugging scenarios exceed the 4-minute timeout or the 6GB-memory
limit. To put those limits into context, the fully typed and fully untyped benchmarks all normally
complete in a few seconds with minimal memory usage. Furthermore, none of the mixed Natural
configurations hit these limits, and with the blame map turned off, the Transient semantics also runs
these programs in a short amount of time and well within the memory limit. In short, even though
the Transient rational programmer appears to do well in the experiment, the implementation of
the Transient blame strategy might be unrealistic.

At first glance, these measurements seem to contradict the results of Vitousek et al. [2017]. They
report an average slowdown of 6.2x and a worst-case slowdown of 17.2x on the fully-typed Python
benchmarks in Reticulated Python when the blame map gets enabled. Unfortunately, the average
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slowdown of 133x and the worst-case slowdown of 560x due to blame in Shallow Racket seems
closer to the truth. There are at least three broad factors that skew Vitousek et. al.’s results:

(1) The 2017 implementation of Reticulated fails to insert certain soundness checks9 and blame-
map updates10 from the paper.

(2) While Reticulated attempts to infer types for local variables, the impoverished nature of
its type system does not allow the ascription of precise types and often resorts to type
Dynamic [Greenman 2020, section 5.4.4]. Code with type Dynamic has fewer constraints to
check at run-time—and much less information to track in the blame map.

(3) Vitousek et al. [2017] use small benchmarks. Four have since been retired from the official
Python benchmark suite because they are too small, unrealistic, and unstable.11 On the flip
side, all the benchmarks in the GTP suite are larger than the official Python benchmarks.
Reticulated Python runs the translation of the smallest GTP benchmark in approximately 40
seconds without blame but times out after 10 minutes with blame.

More work on Transient blame is needed to make an informed decision about its prospects as a
viable production-level approach.

10 WHAT DOES PRIOR RESEARCH SAY ABOUT THIS PROBLEM
At a philosophical level, Lazarek et al. [2020] present the first empirical analysis without involving
humans in this general area. While they do not spell out the notion of the rational programmer,
they present many of the basic ingredients. At a technical level, the two pieces of work differ in
many ways. First the experiment presented here involves three different modes of gradual typing,
theirs a single notion of contract checking. Second, this paper also contributes the idea of creating
three comparable rational programmers, with several modes. Hence it can answer whether blame
adds value to a gradual type system and which gradual type system it benefits the most, while theirs
establishes only a systematic relation between blame for contracts and behavioral bugs. Finally,
this paper also contributes type-level mutators. As explained in section 6, almost none of Lazarek
et al. [2020]’s mutators are useful in the context of gradual typing.
The literature on gradual typing presents many semantics beyond the three used here, and

three additional blame strategies. Pyret (pyret.org) assigns fixed-size data types the Natural se-
mantics and functions a Transient semantics. The Forgetful [Castagna and Lanvin 2017] and the
Amnesic [Greenman et al. 2019a] semantics are similar to Transient but use wrappers instead of
in-lined checks. Nom [Muehlboeck and Tate 2017] and other concrete semantics [Rastogi et al. 2015;
Richards et al. 2017, 2015; Wrigstad et al. 2010] assume that every value comes with a type tag
and use tag checks to supervise the interactions between typed and untyped code. The semantics
derived with the Abstracting Gradual Typing technique [Garcia et al. 2016] are variants of Natural.
The Monotonic semantics [Kuhlenschmidt et al. 2019; Rastogi et al. 2015; Siek et al. 2015; Swamy
et al. 2014] differs from Natural in the treatment of mutable data. It associates every heap location
with a type and rejects updates that lower the precision of types. Among these semantics, only
Amnesic, Nom, and Monotonic present interesting blame strategies. The experiment excludes the
first because it is merely a theoretical construction, the second because it imposes severe restrictions
on programmers, and the third because it requires a re-engineering of the Racket runtime.

9Missing check: https://github.com/mvitousek/reticulated/issues/36
10Missing cast: https://github.com/mvitousek/reticulated/issues/43
11Release notes: https://pyperformance.readthedocs.io/changelog.html
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11 WHAT TO DO NEXT
The interviews of Tunnell Wilson et al. [2018] suggests that programmers prefer the run-time
checking of Natural over other soundness methods. But, the opinion of a random set of programmers
does not mean that blame assignment adds value. Similarly, researchers and language designers
have implicitly answered this question one way or another without evidence for the blame-strategy
dimension. The experiment presented in this paper provides some justification for the programmers’
leanings and helps language creators revisit their decisions. Of course, the design choice remains a
trade-off along several dimensions, and the presented experiment sheds light on only one of them.
The paper does not address a problem in the gradually typed world that was pointed out early

on by practical researchers [Feldthaus and Møller 2014; St-Amour and Toronto 2013; Williams et al.
2017] and that has recently received theoretical attention [Campora and Chen 2020; Greenman et al.
2019a]: mistakes in type annotations themselves. Developers use gradual typing to move an untyped
code base into the typed realm, and to this end, they need typed APIs for the vast repositories of
already-existing libraries. Instead of converting the libraries themselves, language implementors
merely create facade modules that import untyped functions and export themwith type annotations,
like typed-pack-lib in figure 1. With those facades, the compiler can type-check typed modules,
but these retroactive additions of types to a library may result from a misunderstanding of the code.
In short, any retroactively ascribed type may thus be a mistake itself.

The cited evidence suggests that this scenario is quite common and largely unadressed. A future
evaluation must develop mutators that produce incorrect type annotations without breaking the
code itself. Some preliminary work suggests that such type mutators are even more difficult to
develop than the type-level code mutators presented here. Based on the gradual typing literature, the
Natural semantics should discover such mistakes. In contrast, the Transient and Erasure semantics
cannot help with such mistakes at all; indeed, we expect that these latter two raise misleading
exceptions or produce wrong answers without warning. Only additional experimental work can
confirm or reject these conjectures.
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